Prediction of the peak shear strength of the rock joints with artificial neural networks

نویسندگان

چکیده

With the development of computer technology, artificial neural networks are becoming increasingly useful in field engineering geology and geotechnics. networks, geomechanical properties rocks or their behaviour could be predicted under different stress conditions. Slope failures underground excavations mostly occurred through joints, which essential for stability geotechnical structures. This is why peak shear strength a rock joint most important parameter mass stability. Testing characteristics joints often time consuming suitable specimens testing difficult to obtain during research phase. The roughness surface, tensile vertical load have great influence on joint. In presented paper, surface was measured with photogrammetric scanner, determined by Robertson direct test. Based six input network, using backpropagation learning algorithm, successfully learned predict trained network similar lithological geological conditions average estimation error 6 %. results calculation were compared Grasselli experimental model, showed higher comparison model.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of the deformation modulus of rock masses using Artificial Neural Networks and Regression methods

Static deformation modulus is recognized as one of the most important parameters governing the behavior of rock masses. Predictive models for the mechanical properties of rock masses have been used in rock engineering because direct measurement of the properties is difficult due to time and cost constraints. In this method the deformation modulus is estimated indirectly from classification syst...

متن کامل

the effect of taftan pozzolan on the compressive strength of concrete in the environmental conditions of oman sea (chabahar port)

cement is an essential ingredient in the concrete buildings. for production of cement considerable amount of fossil fuel and electrical energy is consumed. on the other hand for generating one tone of portland cement, nearly one ton of carbon dioxide is released. it shows that 7 percent of the total released carbon dioxide in the world relates to the cement industry. considering ecological issu...

Prediction the Return Fluctuations with Artificial Neural Networks' Approach

Time changes of return, inefficiency studies performed and presence of effective factors on share return rate are caused development modern and intelligent methods in estimation and evaluation of share return in stock companies. Aim of this research is prediction of return using financial variables with artificial neural network approach. Therefore, the statistical population of this study incl...

متن کامل

PREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...

متن کامل

Rock Brittleness Prediction Using Geomechanical Properties of Hamekasi Limestone: Regression and Artificial Neural Networks Analysis

The cold climate is a favorable parameter for the development of tension cracks and decrease of rock brittleness. Therefore, this paper attempts to investigate the Hamekasi porous limestone in order to predict the brittleness indices during freeze-thaw cycles. The freeze–thaw test was executed for one cycle including 16 h of freezing, and 8 h of thawing. The geo mechanical properties and brittl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geologija

سال: 2022

ISSN: ['2029-056X', '1392-110X']

DOI: https://doi.org/10.5474/geologija.2022.009